Putting HPSDR on the Internet

John Melton

G0ORX/N6LYT

john.d.melton@googlemail.com
TAPR Digital Forum
Dayton 2010

- Why?
- Hardware
- Server
- Software
- Results
TAPR Digital Forum
Dayton 2010

• Why?

We needed a vehicle to test multiple receivers implemented in the FPGA code of Mercury/Ozy.

FPGA code developed originally by Phil Harman VK6APH. Multiple receivers added by Kirk Weedman KD7IRS and recently developed by Bruce Walker W1BW.

It just developed into an internet application.
• Hardware

Atlas backplane
Ozy I/O board
Mercury receiver board
TAPR Digital Forum
Dayton 2010

- Hardware
• Server

Intel Atom 330
2 GB Memory
1 TB ATA hard drive

• Linux - Ubuntu 10.04 64 bit
Apache2 Web Server
TAPR Digital Forum
Dayton 2010

• Software
 • HPSDR Server
 • DSP Server
 • Client Application
USB data is transferred in 512 byte packets.

8 bytes of header data.

Receiver I/Q data and Mic sample.

I and Q samples are 24 bits (3 bytes). Microphone samples are 16 bits (2 bytes).
Software

Bandwidth Requirements

- 24 bit I samples
- 24 bit Q samples

48000 samples per second = 2304000 bits per second
96000 samples per second = 4608000 bits per second
192000 samples per second = 9216000 bits per second

For just 1 receiver!

8 receivers at 192000 = 73728000 bits per second

My broadband uplink speed is 360 Kbps
TAPR Digital Forum
Dayton 2010

- Software

 - HPSDR Server
 - USB interface to HPSDR
 - TCP socket interface for client commands/responses
 - UDP socket for I/Q data stream

For multiple receivers the I/Q data stream is sent over the USB interface as interlaced samples. The server splits these samples out into separate I/Q data stream buffers and when full sends to client over UDP.
• Software

 - DSP Server
 • TCP connection to HPSDR Server
 • UDP socket to receive I/Q data stream
 • TCP socket for client connection

One DSP server for each receiver. Processes I/Q data stream using DttSP. Processes commands from client to set mode, filter, etc and passes frequency commands on to the HPSDR Server. Processes commands from client to send spectrum data and audio data to client.
• Software

- Bandwidth requirements per receiver

 • Spectrum data sent as 8 bit values
 • Client requests number of samples - currently 480 at 10 requests per second.

 • Audio data sent as 8-bit aLaw at 8000 samples per second.

 • Spectrum data = 480*10*8 = 34800 bits per second
 • Audio data =8000*8 = 64000 bits per second

 • 98800 bits per second per receiver
Software

- Control & Audio
- USB I/Q samples
- commands
- RX 0 Buffer
- RX 0 I/Q
- DSP Server (RX-0)
- commands
- Spectrum Data
- Audio data
- Java Internet Client

- RX n Buffer
- RX-n I/Q
- DSP Server (RX-n)
- commands
TAPR Digital Forum
Dayton 2010

- Software
 - Java Applet Client
 Runs in any browser window.
 Can be run as a standalone application.
• Software
 – iPhone client
Software

- Android Client
TAPR Digital Forum
Dayton 2010

• Software

Ongoing development to support other hardware

SDR-1000
Softrock (both fixed Xtal and Si570)
UHFSDR
TAPR Digital Forum Dayton 2010

• Results

5 Mercury receivers currently active on internet

• Ken N9VV, Chicago, IL
 http://24.192.100.58/jmonitor.html
• Bruce W1BW, Concorde, MA
 http://home.w1bw.us/receiver/
• Jeff KT2K, Sea Girt, NJ
 http://kt2k.ham-radio-op.net/jmonitor.html
• Chris 4X1RF, Haifa Israel
 http://4x1rf.no-ip.org/jmonitor.html
• John G0ORX, Copthorne, West Sussex, England
 http://g0orx.homelinux.net/jmonitor.html
TAPR Digital Forum
Dayton 2010

- Results
 Many accesses from around the world to my web page
Thanks

- HPSDR Group
- TAPR Group
- Phil Harman VK6APH
- Bob McGwier N4HY
- Frank Brickle AB2KT
- Ken Hopper N9VV
- Kirk Weedman KD7IRS
- Bruce Walker W1BW
• References

– Source code in HPSDR svn repository:

 svn://64.245.179.219/svn/repos_sdr_hpsdr/trunk/N6LYT

– Document by Ken, N9VV

 http://www.n9vv.com/N6LYT Online Mercury Receiver.pdf