[aprssig] WIDE settings (was A test for APRS in some lessor traveled Western areas) -- a few questions

Bernard Tyers bernard.tyers at gmail.com
Wed Sep 26 06:59:09 CDT 2007

On 9 Sep 2007, at 08:01, Jan T. Pharo wrote:

> kb2scs at optonline.net, Sat, 08 Sep 2007 20:19:24 -0400:
>> Now with the new paradigm the n really has no meaning any more.
>> you could send packets wide7-2 which would be the same as
>> WIDE2-2. You would get 2 hops in both cases.
> Except that digipeaters might have a setup which traps e.g. n>3 and
> will only give them one hop. In that case, a packet with WIDE7-2 will
> reach the digi, and be retransmitted from it but with the -2 removed,
> so it won't be digipeated any more.


this little thread has been very useful..

A few questions

This n>3 IN, one hop OUT configuration on the digi, is, I presume to  
keep the packets local? (ie in the original sense of APRS's "local  
situational awareness idea?)

Is there a list of TNCs that do this truncation? (Thank you Cap for  
the links.)

Another question, from the second link:

"The home station did typically isn't smart enough to understand how  
to decrement WIDEn-N. It will simply see it as a callsign of  
"WIDE1-1" with the SSID of "-1". It will use up and mark it as used  
in one hop, no matter what numbers are in the SSID."

When it says isn't smart enough, does it mean the digi software, or  
TNC? Which digi software can decrement the WIDEn-N path?

For those trying to understand paths, from the second link Cap sent,  
is this animation showing a mobile station using a fill-in home digi  
(WIDE1-1) and then a high-level digi (WIDE2-2).


Paths have now become a *little* clearer. I think I can actually  
follow things now. (I haven'nt even begun to think about geography  
affecting PATHS. I'll leave that for later)

Thank you Keith, Cap, John and Jan for continuing this discussion.

On a side note, I has taken me almost a week to catch up on 800 odd  
mails to the SIG. All very useful and helpful (even the threads that  
went OT. I was expecting to see some to prove Godwin's Law[1], but  
happily they steered away!)


[1]: http://en.wikipedia.org/wiki/Godwin's_Law
Bernard Tyers
bernard.tyers at gmail.com

More information about the aprssig mailing list