

New Approaches to Optical Packet Switching in Carrier Networks

Thomas C. McDermott Chiaro Networks Richardson, Texas

Outline

- Introduction, Vision, Problem statement
- Approaches to Optical Packet Switching
 - Optical Cross-connects (& GMPLS)
 - All-optical routing
 - Hybrid Optical routing
- Key Technologies enabling each approach
 - Optical switching, optical header processing, synchronization, etc.
- Advantages & Disadvantages of each approach
 - Advantages
 - Cost, bandwidth, granularity, scalability, QoS, etc.
 - Disadvantages
 - Unsolved technical & performance
 - Difficult operational issues

Vision, Problem Statement

- Vision: Avoid electronic processing at transit packet routing nodes by using fast optical switching.
 - Data rate independent, format independent.
 - Promise: much simpler packet nodes.
 - But of course, some kind of routing header needs to be understood by each router.
 - Therefore: separate the header from the payload
 - Process the header (electronically?)
 - Don't touch the data.

Problem: no optical RAM

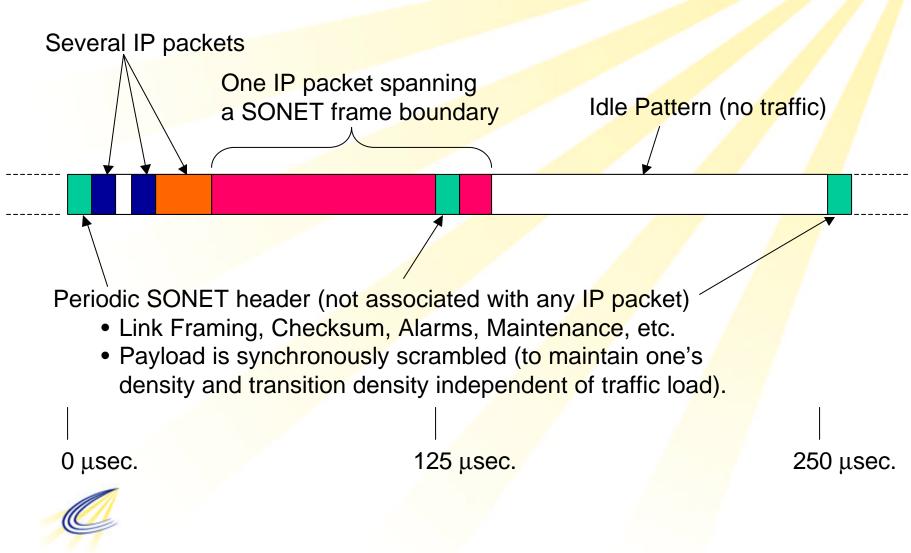
Only fiber delay lines exist: limited time management capability.

Leads to all manner of practical problems!

Approaches: Flow Switching, Deflection Routing, etc.

Definition of an Optical Packet

Two basic types of optical packets:


Packet over Sonet/SDH.

- Industry standard format today.
- Sometimes overly-eager marketing types call this IP-over-WDM, implying what it is not.
- Not directly switch-able in an all-optical network
 - Requires extensive electronic processing at each routing point.

Optical burst over lambda

- No standard format exists, various different researchers have experimented with a variety of formats.
- Goal is to make it directly switch-able in an alloptical network.
 - Avoid altering the data payload.

Packet over SONET

Optical packet bursts Idle (no optical energy)

No link framing, Alarms, Checksum, etc.

- Each Packet is individually identifiable optically
- A minimal gap between bursts is required
- No synchronism between bursts

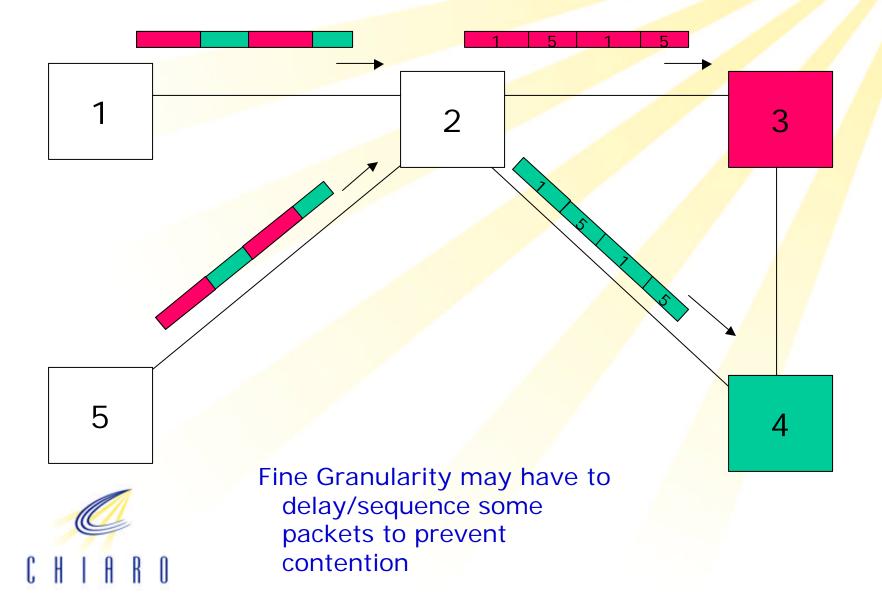
0 μsec.

125 µsec.

250 µsec.

Granularity

Coarse granularity


- Like a circuit switch: all packets in a stream are going to the same output link, whether they want to or not.
- Example: MEMs optical switch
 - Millisecond switching time
- Example: SONET terminal
 - Seconds++ to re-provision channels

Fine granularity

 Like a router: individual packets can be plucked out of a stream and routed to different output links. New packets can be merged into an output link stream that has idle capacity.

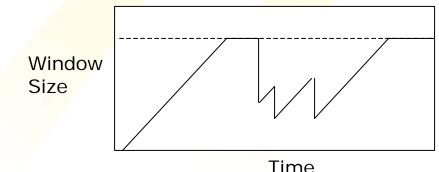
Fine Granularity Example

Coarse Granularity Example

2

3

1



Coarse Granularity consumes more intra-node resources (wavelengths, fibers, or hops)

End to End Protocol

TCP is a dominant protocol in today's network.

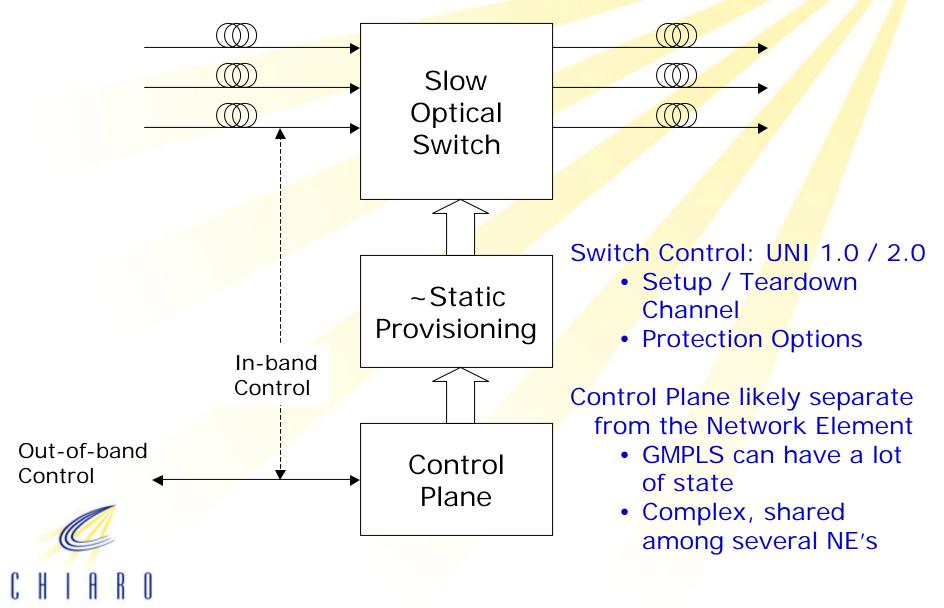
- Reliable data transfer on top of an unreliable channel.
- Congestion detection (missing packets) causes sender to cut the window size in half, then slowly increase it as packets are successfully 'acked'.
- End to end: transfer managed by state stored in the two endpoints.
 - Time constant = 2 * round trip delay
 - "Slow increase" multiplies the effect of the time constant.
 - Thus reduction of packet loss rate (i.e.: congestion management) at the transit nodes is extremely important to throughput.
- →<u>Queuing needed at</u> <u>transit nodes</u>

P. Dykstra "High Performance Networking" SC2002 Tutorial M12

GMPLS & Optical Cross Connect

- Idea: Optical Cross Connect provides low cost switch-able optical layer.
 - Mesh optical layer protection is cost effective minimal O/E/O conversion.
 - Could provision wavelength-on-demand
 - Economics not clear

GMPLS extends Internet protocols


- To discover network topology
- To add new types of links
 - Sonet/SDH: 51Mb/s, STS-3, STS-12, etc.
 - Optical wavelength
 - Optical fiber
- Provides method to setup, teardown, and manage links between routing end points

GMPLS not envisioned to be fast enough to dynamically manage flows

It's basically like a circuit switch

Approach: over-provision facilities to handle anticipated flows

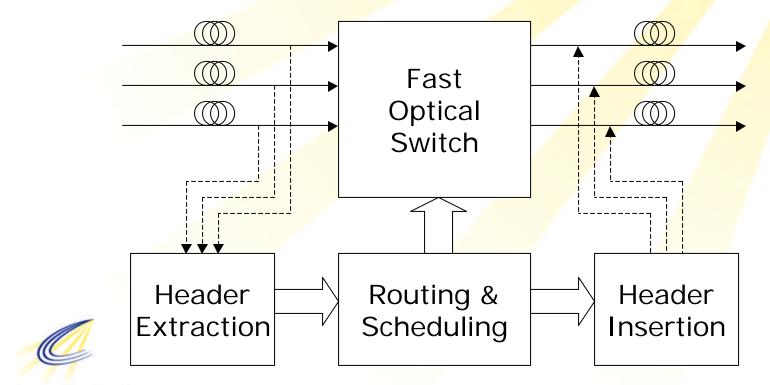
Block Diagram – OXC/GMPLS node

All Optical Routing

- Idea: fast optical switching is capable of routing individual IP packets without electronic conversion.
- Various techniques proposed for independently communicating header information to each router.
 - Separate control wavelength, subcarrier, others.
 - Headers usually handled electronically.
 - Data plane is all optical, but control plane is not
- Problem: synchronization
 - Packets from different sources arrive at any node non-timealigned
 - Either time-align and switch synchronously, or switch asynchronously.

Problem: contention

Packets may contend simultaneously for the same router output

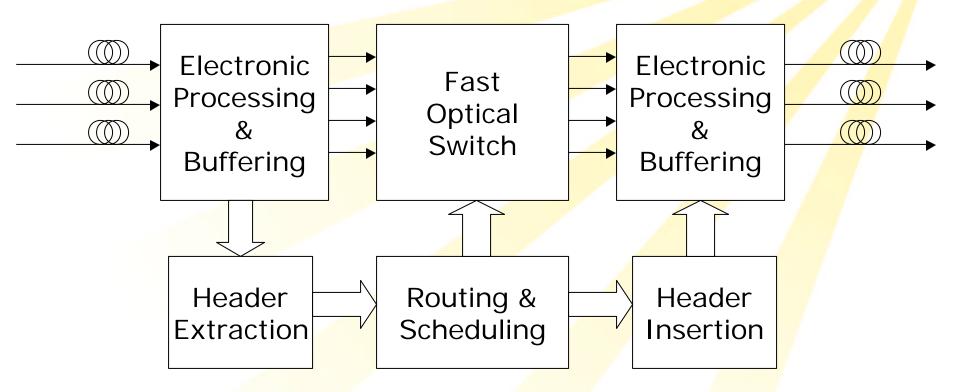


Solving contention requires large degree of storage (both size and resolution) to achieve an acceptable Packet Loss Rate (RLR).

Block Diagram – All optical router

Important Optical Properties of the Switch:

- Gain / Loss
- Dispersion
- Regeneration
- Wavelength Conversion
- WDM



Hybrid Optical Routing

- Idea: electronics is better for manipulating & buffering data, optics is better for switching and transporting data
- Many different approaches proposed
- One approach: use optical switch in the core of the router
 - To solve contention:
 - Provide signaling and arbitration outside the optical domain
 - Provide electronic storage and header processing outside the optical domain
 - Commercially available

Block Diagram – Hybrid optical node

Electronic Processing & Buffering:

- Map To/From SONET, SDH, Ethernet
- Extract / Insert IP Control Packets
- Buffer & Preferentially Queue
- Alter Content of Packets
- 3R function implicit

Key Technologies

Optical Switch

- MEMS: large scale, low optical loss, low dispersion. Cannot directly switch packets due to slow speed.
- Phased array: large scale, very fast switching speeds (nanoseconds). Not optically transparent – higher loss, polarization-dependent.

Wavelength Conversion

- Allows re-use of empty wavelength slots.
- Today: complex and not sufficiently transparent

Optical 2R / 3R regeneration

- Required in all-optical packet networks of large scale.
- Dispersion reset vs. dispersion management?

Burst-mode Receiver

– Easy in theory, more difficult in practice

Issues: packet-to-packet amplitude variation, DC balance and empty slots, dispersion, noise and crosstalk.

Conclusions

All Optical routing is still a dream

- Contention at the transit node needs much more research:
 - Locally-resolved scheduling and deflection approaches
 - Globally-resolved approaches involving new end-point protocols.
- Dispersion, other analog distortions need better solutions.
- OXC / GMPLS is practical, but does not address the routing issue well.
 - Trades higher consumption of network resources to resolve slow flow response.
- Hybrid techniques are the focus of much work
 - Pragmatic approach to contention, header processing, optical signal degradation.
 - Lots of very different approaches possible.

