Choices in Embedded DSP for SDR

Lyle Johnson, KK7P
Dayton Hamvention SDR Forum
May 14, 2010
Overview

- Should I Walk Out Now?
- What is an SDR?
- Primary Hardware Architectures for SDR
- Main Approaches to Implementation
- Choices in Embedded DSP
- Summary
SDR: Who Cares?

• This Talk is Aimed at Two Groups
 • Experimenters
 – Write/Modify Code
 – Build Hardware
 – Explore and Apply Component-Level Technology
 • Operators
 – De-Mystify SDR
 – Understand Difference Between DSP and SDR
SDR: What Is It?

- **SDR**: Software Defined Radio
- Software Implements the **Modes**
 - AM, FM, SSB, CW, Synchronous AM, ...
- Software Implements the **Features**
 - VOX, QSK, Equalizers, ...
- Software Enforces the **Limits**
 - Tx Frequency, Power, ...
- Software Allows **Generalized Hardware**
SDR: What Is It?

- SDR **Does Not** Mean PC-Based
- SDR **Does** Mean **Digital Signal Processing**
 - But DSP **Does Not** Mean SDR
 - Might Just be Audio Filters (FT1000, TS480, IC706)
- SDR Implies Ability to Change Software
 - We **Expect Upgradability** by the User
 - New Features/Modes by Means of Updates
 - Internet Distribution
 - Software/Firmware Distinction is a Red Herring
SDR Architectures

• Direct Digital Sampling
 • SDR-14, SDR-IQ, Perseus, QS1R, Mercury (Receivers)
 • Penelope (Transmitter)
 • ADAT-200A, Hermes/Apollo (Transceiver)

• Direct Conversion To Baseband (Audio)
 • Flex Products
 • SoftRock Series

• Superhet With Bandpass (Roofing) Filters
 • Elecraft K3, Ten Tec Orion, Yaesu FT5000, ...
 • DSP-10, Pic-A-Star

• All Possible with PC or “Embedded” DSP
 – Embedded Simply Means Contained Within the Product
SDR Architectures: Receiver

- Holy Grail is an ADC at the Antenna Jack
 - Convert to Digital As Soon as Possible
 - Needs Really Fast ADC and Blazingly Fast DSP
 - Anti-Aliasing Requires a Front End Filter
 - Blazingly Fast DSP in Software Defined Hardware (FPGA)
- Otherwise Signal Must Be Down Converted
 - Quadrature Oscillator/Mixer to Baseband
 - Traditional Front End to Low IF
SDR Architectures: Transmitter

• Conceptual Goal is a DAC at the Antenna Jack
 – Convert from Digital As Late as Possible
 – Needs Really Fast DAC and Blazingly Fast DSP
 • Reconstruction Filter Required
 • Blazingly Fast DSP Can be Done in Hardware (FPGA)

• Otherwise Signal Must Be Up Converted
 – Quadrature Oscillator/Mixer from Baseband
 – Traditional IF to Operating Frequency Signal Conversion
To PC or Not to PC

• PC-Based SDR Designs are Suitable for Fixed (and Sometimes Portable) Use
 - Sunlight Readable PC Screens are Rare
 - Mouse Somewhat Impractical for Mobile Operation

• PC-Based Radio is Sharing the PC’s CPU and OS
 - Drivers and Upgrade Support
 - Latency
 - Block Processing vs Per-Sample Processing
 - Other Programs and Processes (DPC)

• Common Examples of PC-Based Designs
 - Flex, MicroTelecom, RF Space, SRL-LLC
 - OpenHPSDR
Embedded DSP

• Low Power (500 mW vs 50-200W for a PC)
• Low Cost
• Simple, Fast, Intended for Real Time Applications
 – No GUI-Based, Cycle-Stealing OS
• All the DSP’s Power is Available for the SDR
 – A 75 MHz DSP Can Often Keep Up With a 2 GHz PC
 – Imagine What a 600 MHz DSP Can Do!
 • Is This “Less’s Law”?
• Let’s Take a Closer Look
DSP Choices

• DSP Chips Are Available in a Wide Range of Computational Power and Speed

• Low End: 16 bit Fixed Point
 • Fixed Point Just Means the Math is Harder
 – dsPIC: 40 MIPS
 – Analog Devices Blackfin: 400 MIPS
 – TI TMS320VC5500 Series: 100-400 MIPS

• High End: 32 bit Floating Point
 – Analog Devices SHARC
 – TI TMS320VC674x
Low End DSP Possibilities

• Icom IC-7000 (Operators)
 – Analog Devices Blackfin: 400 MIPS

• SoftRock (Experimenters)
 – PC Based, so not Embedded DSP
 – But Wait, There’s More...

• Midnight Design’s NUE-SDR (Experimenters and Operators)
 – TI 16-bit “USB Stick” Eval Board: $49
 – Uses SoftRock 6.3 RxTx!
NUE-SDR Pre-Prototype

NUE-PSK Digital Modem (upper left)
Spectrum display of SDR output displays band activity

Prototype Clocking, Tuning and HF Modem (lower right)
SoftRock (left), eZDSP starter kit running NUE-SDR v0.5 software and Si570 Controller & Frequency Generator on front panel
NUE-SDR Prototype

Optional add-on
NUE-SDR transceiver

Softrock RXTX 6.3

eZDSP USB Stick
Development Tools for Low End DSP

• dsPIC
 – MPLAB IDE (free download from Microchip)
 – C Compiler (free download from Microchip)
 – ICD-3 Debugger (about $150)

• Blackfin
 – Analog Devices Tools: $3,500 (oops...)
Development Tools for Low End

- TI TMS320VC55xx
 - TMDX5505EZDSP Eval Board: $49
 - Includes USB Debugger/Loader
 - Includes Stereo Audio I/O
 - Embeddable in Projects (e.g., NUE-SDR)
 - TMDX5515EZDSP Eval Board: $79
 - Higher Performance, More Features
- Full Code Composer Tool Suite
 - Free Download
 - Fully Functional if Eval Board Attached
 - Otherwise $1,995 and up
High End DSP Possibilities

• Suitable for High Performance Radios
 – Huge Dynamic Range
 – Fast: 1.2 Billion Floating Point Operations/Sec
 • Bill Gates, Steve Jobs nor Linus Torvalds get any of those cycles!

• Today’s High Performance Transceivers Use 32-Bit Floating Point DSP (or PCs)
 – But Not All are SDRs (e.g., Field Upgradeable, Software-Defined Features)
High End DSP Chips

• Analog Devices SHARC Series
• Used in (Operators):
 – Ten Tec Orion
 – ADAT-200A
• Expensive Development Tools (Experimenters)
 – $3,500 SW
 – Emulator/Debugger...
 – Oops...
High End DSP Chips

• TI TMS320VC674x Series
 – Up to 1.2 Billion Floating Point Operations/Sec
 – Low Power (under 1 watt)

• Development Tools (Experimenters)
 – Free if Using $99 Debugger
 • Cheap Enough for Hams!
 – $1,995 if Using Higher End Debugger/Emulator
Yet Another Approach

• TI’s OMAP (Experimenters)
• OMAP is a 300 MHz ARM Plus a 300 MHz DSP
 – Inexpensive
 – Low Power
 – Widely Used in Cell Phones!
• Latest Chips use 674x DSP Core
• ARM Can Run Linux for UI and Background
 – DSP Unencumbered by OS
• Uses Standard TI Toolchain or Linux
Beagleboard (Experimenters)

- Open Design based on OMAP 3530
- $149 from Digikey
- Can be Embedded in Project
- Runs Linux, Gnome, Android, Symbian, QNX, Windows Embedded, ...
 - Can be Crippled Just Like a PC 😊
- http://beagleboard.org for details
Embedded DSP for SDR Summary

• SDR Can be PC or Non-PC Based
• SDR is Mainstream in Amateur Radio Today
• SDR Means DSP
 – But DSP Does Not Mean SDR
• SDR Is a Wonderful Learning Opportunity
 – An Experimenter’s Paradise!
Embedded DSP Choices for SDR

THANK YOU!