
51

YAAC: The Development of "Yet Another APRS Client", an Open-
Source Cross-Platform Application 

Andrew Pavlin, KA2DDO 

ABSTRACT 
 

Of the many APRS clients currently available, all of them have some limitations or constraints. YAAC 
(Yet Another APRS Client) was designed and implemented to meet the author's needs and hopefully 

some unfulfilled desires of the Amateur Radio community, while also being a personal research project 
in the grand old Amateur Radio tradition of home-brewing. 

Keywords: APRS client, open source, packet radio 

1  Introduction 
Although many APRS client programs and embedded systems have been created, none of them meets all 
possible needs; each is specialized towards what their implementers intended them to do (more or less). 
This paper discusses the process this author went through to create a customized yet flexible, 
extendable, and portable APRS client. 

1.1  Why Write YAAC? 
There are numerous APRS clients available, the best-known of which include (but are not limited to): 

 the original APRS-DOS (by Bob Bruninga WB4APR) 

 WinAPRS and MacAPRS (by Keith Sproul WU2Z and Mark Sproul KB2ICI) 

 Xastir  (by Frank Giannandrea and the Xastir Group) 

 UI-View (by Roger Barker G4IDE) 

 APRSIS32 and APRSISCE (by Lynn Deffenbaugh KJ4ERJ) 

 APRSdroid (by Georg Lukas DO1GL) 

 the built-in TNC's in some Kenwood and Yaesu amateur radio transceivers, such as the TM-
D710 

However, none of these completely met my needs for an APRS client that would simultaneously: 

 operate completely disconnected from the commercial wireline Internet (as in simulated or real 
emergencies such as ARES or RACES would support); 

 have up-to-date, readily available, highly detailed and customizable maps that were zoomable 
and pannable; 

 operate consistently on multiple platforms, including (but not limited to) both Microsoft 
Windows® and Linux™; 

 be extendable with arbitrary new features as the need for said features became apparent when I 
wanted to add the extensions (as opposed to waiting for someone else to get around to making 
the extensions for me); 



52

 have support available for the software when I needed it; 

 support modern platforms and be easily ported to other platforms as the need arose; 

 provide the concise yet complete real-time tactical information that Bob Bruninga keeps 
reminding us about. [APRSTAC] 

Additionally, as a amateur radio operator, my inclination is to tinker with the technology to see if I can 
do it better, or at least better understand how the technology (in this case APRS) works. 

 1.2  Goals for YAAC 
Given the above stated needs, my goals for a suitable APRS client are: 

1. Should run on my chosen platforms (Linux™ and Microsoft Windows®) without being 
restricted to only those operating systems. 

2. Should have source code I can access and change as I wish, without violating any licenses or 
laws. 

3. Should be up-to-date with current specifications and standards for APRS and the supported 
platforms, but able to grow when those standards evolve. 

4. Should be backwards-compatible and interoperable with existing deployed APRS clients (such as
those itemized above) and the APRS-IS backbone. 

5. Should be fully functional without any commercial Internet connectivity whatsoever, but capable 
of taking advantage of the Internet when it is accessible. 

6. Should work with standard and common APRS and AX.25 hardware, such as TNC2-compatible 
TNCs, Kenwood radios with embedded TNCs, NMEA-0183-compatible GPS receivers, and 
consumer-priced weather stations (i.e., equipment I already own). 

7. Should be user-friendly to non-programmers, and generally quick, easy, and obvious to use. 

8. Should perform reasonably well (response-time wise) on non-high-end computers (such as my 
entry-level laptop). 

 2  The Process of Creating YAAC 

 2.1  Preparation and Software Engineering 
Several up-front decisions were made that would guide the rest of the project. 

First, for software portability, the Java language was chosen for its "write once, run everywhere" 
capability (or, as Java developers joke, "write once, test everywhere"). And, both because it is a good 
software engineering practice, and because the Java language is strongly oriented towards it, the Object-
Oriented Programming design philosophy was adopted. Additional philosophies adopted were the 
Model-View-Controller division of the software "objects", and the Internet robustness principle of "be 
conservative in what you send, liberal in what you accept" regarding standards compliance and 
interoperability. [RFC1122] Because it was such an excellent extendibility feature of both UIView and 
many other non-APRS applications, YAAC would have a "plug-in" means of adding extensions without 
having to issue a new release of the core software, using the Provider design pattern seen in the Java 
runtime library. 



53

Because I wanted other users to be able to have the same benefits I would have with YAAC, open-source 
was the only way to release the software (so that other users could also extend YAAC as they wanted 
without having to wait for someone else to do it for them), and the Free Software Foundation's General 
Public License (or something similar to it) was the only way to guarantee that right couldn't be taken 
away. This decision restricted what other libraries and data sources could be used in implementing 
YAAC, due to incompatibility with the GPL [GPL], and the legal inability to give those components 
away as open-source. However, to avoid having to support any bad initial design decisions, YAAC 
would remain closed-source until it completed alpha-testing and was formally released; that way, 
significant architectural changes could be made to correct early design mistakes and limiting 
assumptions rather than having to be backwards-compatible with the mistake forever (a frequent issue 
seen in software). 

 2.2  The Design of YAAC 
To meet the recommended data presentation needs, YAAC needed to be able to display incoming APRS 
traffic in several different ways (as a minimum): 

 the expected geographical map of station/object locations, with complete control over how and 
which features are displayed on the map. 

 tabular reporting of raw incoming messages, with user-selectable sorting. 

 tabular listing of stations and APRS Objects, with user-selectable sorting. 

 tabular reporting of incoming APRS text Messages, with user-selectable sorting. 

 filtered tabular reporting and logging of incoming APRS text Messages, to support Bob 
Bruninga's field data entry proposal. [FIELD] 

 bulletin display, per the APRS 1.0.1 specification in chapter 14. [APRS101] 

 highlighting selected stations, APRS Objects, and map landmarks (to help the user locate any of 
these on a cluttered map). 

 1-to-1 station-to-station chat sessions, modeled on Internet instant messaging clients. 

All of these view modes should use windowing-system-native display styles. 

YAAC was designed from the beginning to use the Java I18N (internationalization) support to allow 
plugging in alternate-language display strings for the GUI and the online help. 

Given the platform portability and disconnected-from-the-Internet goals, Google Maps® and its 
competitors were immediately rejected (they needed Internet connectivity), as was the Precision 
Mapping® program (used by UIView), DeLorme Street Atlas® (used by some Windows-based APRS 
clients), and their competitors (due to lack of platform portability). The OpenStreetMap Foundation's 
open-source map data was the most obvious choice for world-wide open-source map data [OSM], but it 
required a renderer to use it. Rather than use the OSM tile server (requires Internet connectivity) or 
adapt or copy one of the existing open-source renderers for OpenStreetMap data, I decided to "roll my 
own" renderer in a moment of hubris and excessive optimism (more about this later). 

To support the functions that YAAC would have to perform, the following third-party libraries were 
selected: 

 the open-source but non-GPL'd OpenMap library from BBN Technologies, [OPENMAP] 



54

 the Lesser General Public License controlled RXTX library for serial-port I/O in Java, [RXTX] 

 the old but still GPL'd JavaHelp 2.0 library from Sun Microsystems (now Oracle), [HELP] 

 the Apache Commons' commons-compress library. [COMPRESS] 

Because OpenMap's open-source license was not fully compatible with the GPL, the planned license for 
YAAC was changed to the FSF's Lesser General Public License. [LGPL] I felt that the additional license
restrictions on OpenMap were acceptable for my project, versus trying to find a fully GPL'd/LGPL'd 
alternative, or re-creating the complicated mapping algorithms without making errors or infringing on 
someone else's copyrights or patents. 

Knowing that YAAC would grow very quickly into a rather large program, Java's packaging design 
pattern was used to segment the different functional parts of YAAC from the very beginning. To 
uniquely identify the software, I chose a package hierarchy based on my callsign and the Internet 
domain name (ka2ddo.org) I would use for distributing YAAC alpha-test builds. The packages in YAAC 
were identified as follows: 

 org.ka2ddo.yaac.aprs - classes related to specific APRS packet types. 

 org.ka2ddo.yaac.ax25 - classes related to AX.25 frames (regardless of whether they contained 
APRS packets or not). 

 org.ka2ddo.yaac.bootstrap - classes related to starting up YAAC. 

 org.ka2ddo.yaac.core - classes related to the YAAC core functionality. 

 org.ka2ddo.yaac.core.provider - classes for the default or "root" plugin, defining the core 
functionality of YAAC. 

 org.ka2ddo.yaac.core.queries - handler classes for the APRS standard queries (as defined in the 
APRS 1.0.1 specification in chapter 15) [APRS101], and a few custom extension queries defined 
by the APRSIS32 client or unique to YAAC itself. 

 org.ka2ddo.yaac.docs - HTML files and images for online help for the application. 

 org.ka2ddo.yaac.filter - classes related to filtering AX.25 and APRS frames, so a user could look 
at a dynamically-defined subset of the data being processed. 

 org.ka2ddo.yaac.gps - classes related to processing NMEA-0183 sentences. 

 org.ka2ddo.yaac.gui - classes related to the Graphical User Interface of YAAC. 

 org.ka2ddo.yaac.gui.configwizard - GUI classes for configuring YAAC. 

 org.ka2ddo.yaac.gui.drawlayer - GUI classes for drawing custom features onto the map. 

 org.ka2ddo.yaac.gui.genericwizard - infrastructure classes for implementing "wizard" panels and 
controlling the sequencing of wizard panels. 

 org.ka2ddo.yaac.gui.table - classes for custom-controlling Java Swing JTables. 

 org.ka2ddo.yaac.io - classes related to YAAC's connections to outside devices, such as radios and
Terminal-Node Controllers, GPS receivers, and the Internet. 

 org.ka2ddo.yaac.os - classes related to operating-system-specific features that YAAC would have
to adapt to, that Java didn't already handle in a portable manner. 



55

 org.ka2ddo.yaac.osm - classes related to processing and rendering OpenStreetMap data. 

 org.ka2ddo.yaac.pluginapi - classes related to defining the standard plug-in Application 
Programming Interface (API) for YAAC. 

 org.ka2ddo.yaac.util - utility classes that didn't fit in anywhere else. 

 org.ka2ddo.yaac.weather - classes related to processing weather station data. 

The main class for YAAC, the default-language localization resource bundle, and the JavaHelp indexing 
files were put in the top-level org.ka2ddo.yaac package. 

Because YAAC would need to be uniquely configured for each installation (at a minimum, a unique 
callsign and I/O port to the Internet or a TNC), I chose the Java Preferences feature as a platform-
portable place to store configuration data. 

 2.3  The Implementation of YAAC 
YAAC's implementation used conventional software development tools on my home computer, very 
similar to what I use in my professional life as a software engineer. A commercial Java integrated 
development environment (IDE) from JetBrains called Intelli-J IDEA was used for Java development; 
although Eclipse was available for free, my personal preference was to use this easier-to-use commercial 
development tool despite its cost in real money (noting that my usage would not force any future 
developers to use this particular IDE). The open-source free software product Subversion was used as 
the version control system, and Apache Ant was used as the build tool. The appropriate operating-system 
variants of the Sun Java® Development Kit V1.6.0_31 (which includes the Java Runtime Environment 
of the same version) were used to compile and execute YAAC. The following sections discuss some of 
the major implementation details of YAAC over the past year's development. 

 2.3.1  Initial Development of YAAC 
YAAC was implemented in a step-wise manner, such that older features could be used to help debug 
YAAC's own newer features. Initial features were developed in the following order: 

1. The basic GUI framework, using the Java Swing toolkit to create the initial JFrame with a menu 
bar and OpenMap map panel. 

2. The basic plugin API. 

3. The startup code with means of reading saved port configuration data, opening previously 
configured ports, and loading the default plugin to define the initial set of  port drivers and GUI 
menu choices. This startup code also provided common helper functions to support text message 
localization. 

4. The default plugin with the initial set of menu choices; the first menu command implemented 
was the File->Exit command. 

5. The AX.25 frame classes and AX.25 protocol stack (assuming a KISS TNC). 

6. The Serial_TNC port driver (using the RXTX library) and the generic infrastructure for interface 
ports. 

7. The "sniffer" window with its tabular display of raw incoming AX.25 messages (adding the 
View->Sniffer menu choice). 



56

8. The configuration GUI for creating and modifying the settings of serial TNC ports (adding the 
File->Configure menu choice). 

At this point, I had an initial working program which I could start unit-testing, and immediately 
discovered some "undocumented features" (as commercial software vendors are wont to call unexpected 
system behaviors). 

First, the RXTX library had an interesting interaction with the Java virtual machine; it required that a 
Java property (java.library.path) identifying the directory containing native JNI library files be defined 
prior to starting the virtual machine (through a command-line option on the java command), because 
RXTX could only find its platform-specific native I/O libraries in directories listed in that property. This 
made it difficult for YAAC to run-time determine its host operating system and define the property to 
point at the correct set of native library files of the several sets provided in the RXTX binary 
distribution, and made it impossible to start YAAC just by clicking on its jar file in an operating system 
file browser such as Windows Explorer. I couldn't depend on the operating system itself to provide 
RXTX; only some Linux distros even included RXTX as an optional library component which was not 
guaranteed to be installed, and the most likely platforms (Microsoft Windows and Mac OS X) explicitly 
did not include RXTX (since it was not Microsoft or Apple proprietary software, respectively). 

I considered modifying RXTX (since it is an open-source LGPL library) to accept the library directory 
name as a method parameter. However, I did not own copies of every platform RXTX already supported 
in its binary distribution (so I could recompile all the native libraries to account for any changes I made), 
and I did not know how long it would take my changes to become part of the official RXTX distro and 
how long those changes would then take to trickle into the Linux distros. I also looked for alternatives to 
RXTX (including some branched variations of the RXTX library that included automatic native library 
variant selection), but none of them were routinely provided by major Linux distros. 

So, I instead wrote a "bootstrap" class to perform the sole function of finding out which operating 
system YAAC was running on, locate the correct platform's version of the RXTX native libraries, 
compute the correct value for the java.library.path property, and then launch the real YAAC program as a
sub-process using the java.lang.Runtime class's exec() method, specifying the java.library.path property 
on the subprocess's invocation command line. This was inefficient, ugly, and wasteful of system 
resources (running two Java virtual machine instances), but it worked. The bootstrap class also turned 
out to be useful later when alpha-testers tried running YAAC on an older version of the Java runtime 
environment, and YAAC failed with a not-very-visible and certainly user-hostile error message:  

Exception in thread "main" java.lang.UnsupportedClassVersionError: Bad version number in 
.class file 

Unfortunately, YAAC was using Java runtime features introduced in Java Standard Edition Release 6, so 
I couldn't successfully compile YAAC with a previous version of the Java compiler and have it work, 
without going to significant effort to re-implement these new features myself in the older release. 
However, the YAACBootstrap class was not using any of those new features, so this class alone could be
compiled using an older compiler version (more strictly, telling the Java 6 javac compiler to produce 
classfiles for an older runtime with the "-target 1.5" command-line option), and YAACBootstrap's 
operating system test could also test the Java runtime's version for the minimum acceptable Java release, 
and display a more user-friendly error message explaining why YAAC wouldn't work (complete with 
directions for obtaining an upgraded version of the Java runtime) if the Java release was too old. 



57

 2.3.2  Implementation of the YAAC Plugin API 
The plugin API was implemented as an abstract class, org.ka2ddo.yaac.pluginapi.Provider, defining a set 
of methods that would tell the plugin loading code what features each plugin was defining. Each plugin 
would be provided as a standard Java jar file, with the jar manifest file defining a global attribute, 
YAAC-Provider. This attribute's value would be the fully-package-qualified class name of a class in the 
jar file that extended the Provider class. YAAC's main class, org.ka2ddo.yaac.YAAC, would search the 
YAAC installation's plugins sub-directory for jar files (in modification date order), test if each jar file 
had a manifest with the YAAC-Provider attribute, and test if the named class in the jar file was a 
subclass of the abstract Provider class with a no-arguments constructor. If so, an instance of the class 
would be created using the Java reflection facility, and the methods defined by the abstract superclass 
would be called to determine what features (if any) the plugin would add to YAAC. Before the plugins 
directory search, the default provider implementation, org.ka2ddo.yaac.core.provider.CoreProvider, 
would be instantiated and called first to set up the core functionality. Plugins are able to replace core 
functionality by redefining the functions in the plugin's Provider; the specific ordering of plugin jars by 
modification date is to ensure older plugins don't override newer plugins. 

The Provider's defined public methods that can be overridden by subclasses are: 

public boolean runInitializersBefore(int 
providerApiVersion) 

Execute this function before calling any of the other 
functions of this Provider. This allows any Provider-
specific initialization to run before menus and drivers 
are loaded, and also permits the Provider to block 
usage of the plugin (for example, if the plugin 
provides services only available on Microsoft 
Windows®, but YAAC is being executed on Mac OS 
X®). 

public ImageIcon getImageIcon() Return an icon image associated with this Provider 
(displayed in the Help->About dialog as part of this 
plugin's identification). 

public Provider.PortEntry[] 
getPortConnectorTypes() 

Get PortConnector driver classes provided by this 
Provider. 

public Map<String,javax.swing.JComponent> 
getConfigurationPanels() 

Get any panels needed by this Provider to provision 
or configure the services offered by the Provider. 
Note that it expects already-localized strings for the 
tab names; this is safe because this method is not 
called until the File->Configure->Expert Mode menu 
command (installed by the default Provider subclass, 
CoreProvider) is invoked, by which time all Providers 
and their associated localized ResourceBundles will 
be loaded. 

public org.ka2ddo.yaac.filter.Filter[] getFilters() Get any filters to add to the main 
CumulativeBooleanAndFilter in the main class of 
YAAC. 



58

public javax.swing.Action[] getMenuItems() Get Actions to define new menu items from this 
Provider. Actions must define the following 
properties: 

 PRE_LOCALIZE_MENU_TAG_NAME - the 
pre-ResourceBundle.getString() lookup of 
NAME that potential overriding menu entries 
can be identified (i.e., 
"menu.View.Weather.Wind") 

 PRE_LOCALIZED_MENU_HIERARCHY - 
localization tag names for the menu names in 
hierarchical order to contain this menu entry 
(i.e., { "menu.View", "menu.View.Weather" })

 SMALL_ICON (optional) - to label the menu 
entry 

Other properties defined by Action or this class may 
also be specified. In particular, "selected" triggers use 
of JCheckBoxMenuItem or JRadioButtonMenuItem, 
and "BUTTON_GROUP_NAME" differentiates 
between them (JRadioButtonMenuItems are always 
associated with ButtonGroups). 

public String[] getAboutAttributions() Specify attributions, credits/acknowledgements, and 
license references to be displayed in the About dialog 
box. This method is called when the Help->About 
menu choice is selected. 

public HelpSet getHelpSet() Provide an additional JavaHelp HelpSet to merge into 
the base HelpSet for complete online documentation. 

public void runInitializersAfter() Execute this function after calling all of the other 
functions of all the Providers. This allows any 
Provider-specific initialization to run after all menus 
and drivers are loaded. 

 

All of these methods were implemented in the abstract superclass as do-nothing, return success, return 
zero-length array, or return null functions (as appropriate), so that subclasses would only need to 
override the methods needed by that plugin. 

 2.3.3  Implementation of I/O, AX.25 and APRS Protocol Stacks 
Because of the way the RXTX library implements serial port reading, all the serial port drivers (for 
KISS TNCs, Kenwood radios in APRS mode, GPS receivers, and weather stations) are implemented 
much the same way. The general abstract superclass org.ka2ddo.yaac.io.PortConnector declares the 
basic methods that all port subclasses have to support. The class PortConfig defines a generic set of 
fields for declaring the parameters of an open port, such as the operating-system-specific device file 
name, the baud rate of the RS232 serial port, a flag indicating whether transmitting is allowed through 
the port, etc. PortConfig also provides common code for saving and restoring these configuration 



59

parameters to/from the Java Preferences backing store. 

The subclass's implementation of the abstract configure() method opens a port of the driver's type using 
the PortConfig object's parameters. For serial-port-based drivers. this means obtaining the 
gnu.io.CommPortIdentifier for the device port, opening the port and its associated InputStream and 
OutputStream, and registering the PortConnector subclass instance as a gnu.io.SerialPortEventListener 
(which the subclass implements). The serialEvent() method then indicates whenever serial-port data is 
received. 

When a SerialEvent of type DATA_AVAILABLE is received, the serial port is read, one byte at a time, 
as long as the InputStream's available() method indicates there is more data. The bytes are collected into 
a pre-allocated byte array until an end-of-frame is reached (carriage return for ASCII-line-based 
interfaces like the Kenwood, GPS, and weather drivers; 0xC0 (KISS Frame END) for serial TNC). Note 
also that the KISS escape codes have to be processed in the unlikely but possible case of a frame 
containing one of the KISS-protocol-reserved framing or escape codes. [KISS] For the GPS and weather 
drivers, the resulting byte array is converted into an ASCII-valued Java String object and passed to the 
GPSDistributor or WeatherDistributor singleton classes (as appropriate). The serial TNC driver passes 
the byte array to the constructor for the org.ka2ddo.yaac.ax25.AX25Frame class, then sends the 
constructed frame to the AX25Stack for processing. 

The AprsIsConnector opens a socket-based network connection rather than a local serial port device. and 
reads the serial input data just like the Kenwood driver does. Both of these drivers, once they reach the 
end of the line of a TNC2-format APRS frame, convert the text string into an AX25Frame object for a 
UI frame with PID of "no layer 3 protocol", and send it to the AX25Stack for processing. 

The serial input ports don't have much buffering at the kernel and RXTX native code levels, causing a 
high risk of losing data due to serial port overruns if processing time for any individual byte (such as the 
end-of-frame code) increases to only 1 millisecond (assuming 9600 baud link speeds). To protect against 
this, the AX25Stack uses a java.util.concurrent.ArrayBlockingQueue to buffer the received 
AX25Frames, allowing the serialEvent() method to quickly continue reading bytes from the serial port 
(or, for AprsIsConnector, from the TCP/IP socket). A separate thread drains the queue of frames, one 
frame at a time, and analyzes each frame for appropriate processing, according to the AX.25 protocol 
specification. [AX25] 

UI frames with PID = 0xF0 (no layer 3 protocol) are assumed to be APRS packets and are passed to the 
APRSStack class for decoding into the appropriate APRS packet type. All other (non-APRS) frame 
types are delivered to all registered AX25FrameListener implementations. 

The APRSStack class decodes each frame based on the first byte of the frame body, according to the 
message type codes defined by the APRS protocol specification. If a frame body starts with the "}" 
character, indicating a third-party relayed packet, the third-party header is stripped off and converted to 
an ASCII String, and the remainder of the frame body is analyzed again by the APRSStack parse() 
method to determine the true packet type.  

In any case, the decoded APRS packets are stored in per-type subclasses of the 
org.ka2ddo.yaac.aprs.Message class, typed as follows: 



60

Leading character(s) org.ka2ddo.yaac.aprs class 
!! UltimeterRawMessage 
! 
/ 
= 
@ 

PositionReport 

< StationCapabilities 
> StatusMessage 
' 
` 
\u001c (single non-printable character) 
\u001d (single non-printable character) 

MicE 

; 
) 

ObjectReport (also holds item reports) 

_ PositionlessWeatherReport 
: MessageMessage 
? Query 
$GP GpsRawMessage 
$UL UltimeterRawMessage 
anything else DefaultMessage 
 

All registered AprsMessageListener implementing classes will be informed of each decoded APRS 
packet. 

 2.3.4  Implementation of the Tactical Message Database 
The received APRS messages are catalogued in several different collections, supporting different views 
of the received data. All of these collections of data implement the AprsMessageListener, 
DuplicateCheckedAX25Listener, and/or AX25FrameListener interfaces, so they can receive new 
packets as they asynchronously arrive from (possibly multiple) interface ports. All of these collections 
have at least one view mode (most accessible from the GUI's View menu). For memory efficiency, all of 
the collections hold the same packets; duplicates are not made per-collection. 

The SnifferTableModel is a subclass of javax.swing.table.AbstractTableModel which implements both 
AprsMessageListener and AX25FrameListener, and records all incoming frames until their receive time 
is older than the configured maximum retention time. The Sniffer view (encapsulated in nested instances 
of the SnifferFrame, SnifferPane, and javax.swing.JTable classes) displays the current sorted and filtered 
contents of the SnifferTableModel. JavaSE 6's RowSorter and RowFilter interfaces are used on all 
tabular displays to filter the packets based on current filter settings and efficiently sort the packets in the 
user-desired order. The SnifferTableModel also supports optional logging of incoming frames to disk 
files, and restoring of log files for historical playback. 



61

The MessageModel is also an AbstractTableModel subclass which implements AprsMessageListener, 
but only collects MessageMessage packets; other types of APRS packets are ignored. A window 
containing a JTable displaying this model will be opened and pushed to the foreground if a message is 
received that is addressed to this station's callsign or to an enabled broadcast address such as 
NWS_WARN. The broadcast address list can be changed from the configuration GUI. 

The MessageFilterPane is another implementer of AprsMessageListener which only collects specific 
MessageMessage packets matching the message filters (which are independent of the normal message 
filters), and sequentially logs the matching messages in a javax.swing.JTextArea and/or a disk file in a 
user-specified format, supporting the Field Data Entry use case. [FIELD] 

The OutgoingMessageTableModel is an AbstractTableModel subclass which records APRS packets 
originated by the local YAAC instance (not received or relayed by the local instance) for transmission. 
The JTable display of this data allows you to selectively cancel or immediately retransmit any outgoing 
message. 

The StationTracker catalogs packets in reverse chronological order on a per-sending-station basis, and 
extracts state information to maintain a current consolidated state of each station for convenient display. 
Similarly, the ObjectTracker catalogs Object and Item report packets on a per-Object/Item name basis. 
StationTracker and ObjectTracker share common code in the GenericTracker superclass and StationState 
data class. Updates to the trackers can be reported to classes implementing the TrackerListener interface 
and registering with the appropriate tracker singleton. 

To more easily display current real-time packet traffic, a frame styled after the Kenwood TM-D710 
control head's APRS-mode display was implemented, showing the last packet received via the 
AprsMessageListener interface. 

The AlohaTracker computes the current aloha circle radius for each open RF port. Each time a station is 
added to the StationTracker or a station's position is updated, the AlohaTracker's computation thread is 
scheduled for re-execution. It sorts all the known stations in radial distance away from the local station, 
and then adds up estimated message traffic from each recently transmitting station (per interface port) in 
order until the theoretical channel saturation point is reached; the distance to the station exceeding the 
expected channel capacity is taken as the Aloha radius. Since different RF ports on one station should 
theoretically not interfere with each other, as they should be on different RF channels, each port gets its 
own Aloha radius. If there are not enough heard stations on a port to theoretically saturate the channel, 
the distance to the furthest station is taken as the Aloha radius but the value is flagged as incomplete, so 
the plotted Aloha circle can indicate the incompleteness. 

Dialogs were also created to display the current cached states of the singleton WeatherDistributor and 
GPSDistributor objects. Using a javax.swing.Timer to periodically force a repaint, the GPSStatusDialog 
and WeatherStatusDialogs display the last data reported by the local GPS receiver and weather station. 
Similarly, the BandwidthMonitor reports periodically-updated data throughput statistics for each open 
interface port, sampling the current PortStats objects associated with each open PortConnector. 

 2.3.5  Implementation of the StationRenderer 
The com.bbn.openmap.gui.BasicMapPanel contains a series of layers (specifically, subclasses of the 
com.bbn.openmap.Layer abstract class), registered in back-to-front order. When the map panel needs to 
be repainted, the layers' paint() methods are called in registration order to add their contributions to the 
map. The class org.ka2ddo.yaac.gui.StationRenderer is one of the last layers registered, so the symbols 
for stations and objects/items are drawn on top of the background layers. 



62

StationRenderer has several properties (using the JavaBeans terminology) to enable/disable various 
optional parts of the drawing: 

 age - write the time since last data update for this station/object below the station's identification. 

 aliasInsteadOfCallsign - display a user-entered string for this station or object instead of its 
official identification. 

 allTrackStripes - draw a translucent stripe of the path taken by each moving station or object. 
Other methods are provided to allow drawing a track stripe for a single station or object instead 
of all of them. 

 alohaCircle - draw an orange circle around the local station's position showing the maximum 
range for channel saturation (assuming 1200baud transmission rate, as is common for the 
national APRS 2-meter calling frequency). 

 ambiguityCircle - fill a translucent circle the size of the position ambiguity of each station behind
the station's icon. 

 deadObjects - draw Objects and Items on the map, even if they have been killed by an 
appropriate Object or Item report message (per APRS 1.0.1 specification, chapter 11). 
[APRS101] 

 deadReckoning - draw a dashed stripe of the predicted motion of a moving station based on its 
last known position and course/speed. If not enabled, always draw the station/object at its last 
known position instead of dead-reckoning a position. 

 DF - draw a direction-finder cone for stations reporting bearing and NRQ parameters (APRS 
1.0.1 spec, chapter 8, page 34). [APRS101] 

 itemStatus - fill a translucent circle behind the station or object's icon, indicating state 
information about the station/object, consistent with the original APRSdos application. Color 
codes include white (fixed), cyan (moving), bluer cyan (dead-reckoned), gray (not updated for at 
least 80 minutes), red (station reporting an emergency), yellow (object owned by the local 
station), or purple (object owned by some other station). 

 NWSMultiLine - draw NWS multilines and polygons on the map if they are received in a 
National Weather Service bulletin message. [NWS] 

 rangeCircles - draw a circle around each station (but not objects) showing the estimated range of 
the station, according to the PHGphgd or RNGrrrr information in the station's last position 
report. [APRS101] The circle color is the same as the most prevalent color in the icon. 

 self - draw the local station on the map at its current position. If the local station has a working 
GPS, the last reported GPS position is used, otherwise the configured fixed beacon position is 
used. 

 selfLikeOther - if true, draw the local station using the standard station type icons, otherwise 
draw a purple crosshair (for a fixed station) or course pointer (for a moving station). 

 weatherAsWeather - draws weather stations as old-style weather map symbols indicating the 
reported wind direction and speed for each station. 

 maxAgeDRObject - the maximum time in milliseconds that dead-reckoning should be predicted 
for an Object or Item since its last position report, defaulting to 10 minutes. 



63

 maxAgeDRSpecialObject - the maximum time in milliseconds that dead-reckoning should be 
predicted for an Object or Item considered "special" since its last position report, defaulting to 1 
hour. Currently not used. 

 maxAgeDRStation - the maximum time in milliseconds that dead-reckoning should be predicted 
for a station since its last position report, defaulting to 5 minutes. 

When StationRenderer is told to repaint its content, it draws the following content (skipping anything 
that is disabled according to the above properties): 

1. Aloha circle(s) if any RF ports exist and have received enough data to compute Aloha circles. 

2. all of the stations currently listed in the StationTracker that pass the current filter settings, with 
the callsign or alias for each station to the right of the station's icon. 

3. all of the objects currently listed in the ObjectTracker that pass the current filter settings, with the
object name or alias for each object to the right of the object's icon. 

4. the local station's symbol and callsign. 

5. any AttentionAlerts. These are flashing arrows pointing at a location on the map from the four 
cardinal directions. Green arrows indicate a station or object that was located by the Locate-
>Station or Locate->Object menu commands; yellow arrows indicate a station that has just 
transmitted a priority message; red arrows indicate a station that has just transmitted an 
emergency message. AttentionAlerts are created when the condition to display them occurs, and 
last for a short period of time (10 to 30 seconds, depending on the triggering condition) before 
expiring and deleting themselves from the active list of alerts. 

The StationRenderer also accepts mouse click input. If the mouse is left-clicked upon the map and one 
or more station and/or object icons are under the click, all clicked-upon stations and objects will have 
their current state (from their StationState objects) displayed in a popup dialog box (the 
PopupStationDialog). Clicking elsewhere on the map closes the dialog and potentially opens another if 
there was anything under the new click point. If the mouse is right-clicked upon the map, the defined list 
of popup menu Actions is scanned; each Action is given the current map position and an array of 
StationState objects describing the set of stations and objects at the click-point, so it can report if the 
Action is relevant for the coordinates. If at least one relevant Action is found, a JPopupMenu is 
displayed with the relevant Actions on it, and the user is allowed to select an Action or dismiss the 
menu. 

 2.3.6  Implementation of the OpenStreetMap Renderer 
There were several reasons why I chose to implement my own renderer for the street map data. Firstly, I 
had had professional experience with commercial closed-source vector-to-raster map renderer libraries 
which took an extremely long time to render even sparsely featured areas. Secondly, estimating the size 
of a colored map tile raster image for a typical usable PC screen resolution, the amount of disk storage 
needed to cache pre-rendered tiles at multiple zoom levels for any reasonably large geographical area 
would be enormous, exceeding the available disk space of most portable laptop or netbook computers. 
So I chose to render on-the-fly on demand for the screen area, but sub-divide the vector data into 
geographical blocks, so as to waste as little time as possible reading vectors that aren't visible on the 
screen by only reading vectors from blocks overlapping the map panel. 

OpenStreetMap data is provided as a bzip2-compressed XML file. Compressed, the planet.osm.bz2 file 
is approximately 22 gigabytes of data (5 times the capacity of a DVD-ROM optical disk), and 



64

uncompressed over 10 times that size. Some mirror websites provide subparts of the planetary data set, 
segmented into continent, country, and/or state/province, but the data is several months out of date (not 
surprising, given the amount of time it would take to read the planetary data set into a database and then 
read back and XML-encode each bounded subset). Even optimized bzip2 decompressors running as fast 
as possible on a 3GHz server took 132 minutes (over 2 hours) to decompress the entire planet file 
without doing anything useful with the contents. Furthermore, the map data is structured as a series of 
Node objects with an identifying number and a point position in latitude and longitude plus optional Tag 
data, followed by a series of Way objects each specifying an ordered list of Node identifiers making up 
the polyline or polygon plus optional Tag data. Such data is horribly inefficient to assemble into 
renderable polylines/polygons without a relational database, whose metadata and index overhead would 
consume as much disk space as the uncompressed XML file, aside from the processing and disk I/O 
overhead needed to look up and assemble a Way object. 

So I implemented an OpenStreetMap importer that would: 

1. scan through the gigantic input file; 

2. build an efficient index of Node identifier to latitude/longitude coordinates; 

3. build Way objects by converting each Way's ordered list of Node identifiers into lat/lon pairs 
using the index, 

4. extract only associated Tags that provide information useful for rendering maps (for example, the 
name of the individual OpenStreetMap contributor that added the Way to the OSM central 
database would not help draw the Way any better), and discard the rest; 

5. write the Nodes and Ways in a compact efficient binary format to files in 1-degree by 1-degree 
"tiles" of vector data, intelligently segmenting Ways that spanned multiple tiles into partial Way 
records in each tile. 

This importer still takes a very long time to run, even in its latest incarnation with a 3-thread architecture 
with pipes and queues between them to keep the CPU working while blocked on disk I/O; with the 
planet-120704.osm.bz2 file from http://planet.openstreetmap.org on the same 3 GHz 8 core CPU server 
with 12 GB of RAM and a 64GB solid-state disk (SSD) SATA drive, the latest version of the importer 
took 11 hours, although this was a vast imporivement over previous versions running on a rotating 
conventional disk with rotational latency accessing the sectors on the disk. On the other hand, the 
resulting size of the complete set of binary tile files is only approximately 9GB (less than half the size of 
the compressed XML file), and each Way and Node record is organized efficiently for the renderer to 
use, not requiring parsing and interpretation like the XML file would.. 

The OpenStreetMap renderer itself was implemented as an OpenMap Layer subclass called OSMLayer, 
registered to the BasicMapPanel prior to the StationRenderer and OpenMap's GraticuleLayer, so as to be 
drawn behind those layers. Because the vector-to-raster rendering might still take a long time, the 
renderer was implemented to render to a Java BufferedImage object the same pixel dimensions as the 
BasicMapPanel, and OSMLayer's paint() method merely draws the contents of the pre-rendered image 
(if it is valid) to the screen on demand. The actual rendering is triggered if any of these conditions 
happen: 

 the BasicMapPanel is resized (reported through the java.awt.ComponentListener interface); 

 OSMLayer's paint() method is called and there is no valid image to draw and there isn't already a 
renderer running; 



65

 the map is panned or zoomed, changing the Projection of the map (reported through the 
projectionChanged() method required of all Layer subclasses); 

 any of the controls affecting the rendering of the individual Ways and Nodes are changed. 

The controls affecting how the map is drawn include: 

 enabling or disabling the background map as a whole. 

 enabling or disabling drawing highway signs on road-type Ways that have the "ref" tag 
associated with them. 

 enabling or disabling drawing Nodes as points of interest. 

 changing the zoom level above which a category of Ways (identified by its OSM "highway", 
"railway", "waterway", "aeroway", or "power" tag value, which are combined in YAAC into a 
composite WayType, an enumeration type used to efficiently identify the Way category). 

 changing the color or stroke style for a category of Ways. The default colors and stroke styles 
were chosen to match the maps in a hard-copy road atlas. 

These controls are accessed through menu choices defined by the CoreProvider. 

Two actual BufferedImages are used to support the common use case of map panning without zooming; 
this allows the old image to be drawn with an offset (leaving some edges of the map panel blank) whuile 
the updated projection is rendered to the other BufferedImage. 

The actual rendering code is executed in a background thread; the OSMLayer class implements the 
java.lang.Runnable interface so it contains the actual code to be executed by the thread. The renderer 
gets the current Projection of the map panel and saves it with the BufferedImage into which the 
rendering will be drawn. The image contents are cleared (or the BufferedImage is created from scratch if 
the renderer was invoked for a map panel size change). The lat/lon coordinates of the four corners of the 
map panel are obtained to define the lat/lon bounding box of the map (as opposed to the pixel coordinate 
bounding box). The rendering thread then iterates through each 1-degree by 1-degree tile that intersects 
the bounding box, and reads the file of Way records for that tile (if the file exists). Each Way is checked 
to see if its bounding box intersects the map panel, its type is enabled for rendering, and the type's 
maximum zoom level is >= the saved zoom level of the projection. If all of these conditions are met, the 
Way's vertices are translated from lat/lon to pixel x-y coordinates. If the translated Way is larger than 2 
pixels in either X or Y dimension, the paint color and stroke style are obtained. If the Way has a color, it 
will either be drawn as a polyline or filled as a polygon (as defined by the Way). If the Way has a name 
and the Way is larger than the length of pixels it will take to draw the name string, the name will be 
drawn along the Way. If the map zoom level is less than a hard-coded threshold for Node rendering and 
point-of-interest rendering is enabled, the corresponding Node file in the tile will be read and all Nodes 
inside the map panel bounding box will be rendered with their names and appropriate icons. 

At every iteration of the nested loops in the renderer, the renderer's working Projection is compared to 
the current Projection of the map panel; if the Projection has changed (due to a pan or zoom of the map) 
or the map panel size has changed, the renderer is aborted so it can be restarted with the new projection. 

 2.3.7  Implementation of the CoreProvider 
The CoreProvider defines the basic capabilities that YAAC will provide before plugin extensions are 
added. The version number of YAAC, my name as author, and a description and desktop icon are all 



66

specified in the constructor. 

The getPortConnectorTypes() method is overridden to define 5 basic interface classes. Four of them 
(SerialTncConnector, SerialGpsConnector, SerialWeatherConnector, and KenwoodConnector) will only 
be defined if the RXTX library can be successfully linked to its native code library. The fifth, 
AprsIsConnector uses only the built-in network socket I/O classes in the Java runtime library and can 
therefore always work if YAAC can be successfully started. 

The getConfigurationPanels() method is overridden to define 5 panels of configuration controls. These 
panels are somewhat arbitrary divisions of the total set of configuration controls for YAAC, trying to 
keep each panel small enough to fit on a netbook's limited-size screen (in fact, that was one issue raised 
during alpha-testing, because the testing user couldn't reach the Save button at the bottom of a 
configuration panel because the panel was taller than the screen). The core configuration panels are: 

 General Parameters - time to preserve received messages, logging options, message addresses to 
accept as locally of interest. 

 Transmit - parameters affecting the transmission of messages, including digipeating aliases and 
smart beaconing timing. 

 Ports - listing all the configured interface ports, with controls to add, modify, and delete port 
definitions. 

 Beacon - definition of the beacon message the user wants YAAC to send for the local station, 
including format (conventional, compressed, or MicE), symbol code, whether GPS position 
should be used, whether altitude and speed should be included, what the PHG parameters are, 
whether weather station data should be included, the proportional pathing digipeater choices to 
use, and whether to indicate when the local station is actively manned or not. 

 Preferences - user preferences regarding fonts and display units (statute miles vs. kilometers, 
etc.). 

The getFilters() method is overridden to provide a large collection of filter types: 

 filter by age of the message (excessively old messages are not shown or are even discarded from 
YAAC's data pools); 

 filter by whether the remote station indicates it is actively staffed (an APRS 1.1 feature); 

 filter by whether the messages have priority and/or emergency precedence; 

 filter by whether the stations are directly heard or are within 1 RF digipeat of the local station; 

 filter by radial distance from the local station; 

 filter by the remote station type (as specified by the symbol table ID and symbol code in the 
station's packets); 

 filter by the sending stations' callsigns; 

 filter by the last digipeater to relay packets; 

 filter by the to-call (destination callsign) (which can indicate the software type of the sending 
station); 

 filter by the category of station (as also implemented by the Kenwood TM-D710); 



67

 filter by the interface port which brought the packets into YAAC. 

The getMenuItems() method is overridden to define several dozen menu commands that were 
incrementally added to YAAC as the need for these commands arose and/or alpha-testers made feature 
requests for the commands. Each is implemented by subclassing one of the convenience abstract 
superclasses AbstractMenuAction (for frame window menu bars) or AbstractPopupMenuAction (for 
popup menus on the maps and table views); the actionPerformed() method of each Action is overridden 
with code to actually carry out the requested command. Many commands just call "setter" methods on 
other classes in YAAC to change their state; for example, the View -> View Map Layers -> Show Range 
Circles command just toggles the rangeCircles property on the StationRenderer to alternately enable and 
disable rendering range circles on the map. Other menu actions have more complex code as needed. The 
actual complete list of implemented commands is visible in the GUI and in the online help. 

The getAboutAttributions() method is overridden to specify a multi-line description of core YAAC, its 
author, and the 3rd-party software included with YAAC. 

The getHelpSet() method is overridden to locate the YAACHelp.hs file and load it into a HelpSet object. 

The runInitializersAfter() method is overridden to register the StationTracker and ObjectTracker to listen
for incoming APRS packets, and to register all the core Query message response handlers. 

Along the course of adding all the core features, the various abstract superclasses in the pluginapi 
package were extended multiple times to add more capabilities needed by the newer features. 

 2.4  The Legalities of YAAC 
Because I am a professional software engineer, employed for the specific purpose of designing and 
writing software for my employer, there was initially a problem with my releasing YAAC to the general 
public, which was that I didn't have the right to do so because, strictly speaking, I didn't own YAAC, 
despite having written it on my own time on my own computers (not company computers); legally, my 
employer owned YAAC, per my employment contract. Using the directions provided by the Free 
Software Foundation, I requested my employer to release any claims of ownership in YAAC to me 
personally. After several weeks, including evaluation of my software by the company's Chief Scientist 
and the Legal department's Senior Counsel to confirm I was not developing anything of interest to the 
company, I was finally given written notice that my employer released all ownership interest in YAAC 
to me, and I could do with it as I willed. 

It wasn't surprising that it took a long time to resolve this issue, as the company and its relevant officials 
had more urgent and important (to the company) tasks to carry out than freeing my software; it was 
highly appreciated that they did take the time and gave me ownership of my software. 

 2.5  The Testing of YAAC 
YAAC was originally tested on my own personal computers, which included a Fedora Core 13 Linux™ 
development system and a dual-boot laptop running Microsoft Windows XP® Service Pack 3 and 
Fedora Core 15. Besides (and even before) Internet connectivity, YAAC was initially tested with a MFJ-
1278 multi-mode TNC (TNC2-compatible) connected to a Radio Shack scanner or an Alinco DR-1200 
transceiver, a Kenwood TM-D710 mobile transceiver and TH-D72A handheld, a DeLorme TripMate 
GPS receiver, a Byonics GPS2 GPS receiver, and a Peet Bros Ultimeter 500 weather station. Some of 
the testing on the TM-D710 or TH-D72A and laptop was done in mobile and portable operation to try 
different areas' "flavors" of APRS and test the smart beaconing feature. Other "flavors" were tested as a 



68

side-effect of load-testing YAAC with a APRS-IS connection using a large (8000km) radius filter; this 
load-testing was to ensure YAAC would behave reasonably (which it didn't always do) under extreme 
load. 

Once I had obtained legal ownership of YAAC, a Yahoo group, yaac-alpha-testers, was created, a 
webpage was established describing YAAC and containing a current ZIP file of the executable YAAC 
distribution (updated regularly as new builds are prepared) and directions for installing YAAC, and an e-
mail was sent to the aprssig@tapr.org mailing list inviting the list members to become alpha-testers. A 
total of 46 hams from around the world volunteered to try out YAAC, and most sent at least one bug 
report, feature request, or new platform support request; some sent several reports during the alpha test 
cycle. Testing was ad-hoc: each alpha-tester would try YAAC on their computer(s), and report back with 
any issues they had. The issues generally fell into one of five categories (in increasing order of 
occurrence): 

1. lack of support for their preferred operating system or radio/TNC hardware; 

2. complaints of sluggish response (mostly OpenStreetMap map rendering and importing); 

3. user error due to unclear usage directions (requiring a GUI change and/or more online help); 

4. feature requests for new capabilities in YAAC; 

5. actual defects in YAAC requiring fixes. 

My own personal testing was systematic unit and feature testing, verifying the resolution for whatever 
issue a user (including myself) found was working as I had designed it. I also carried out various 
performance (throughput) tests for both incoming packet rates (the above-mentioned 8000km radius 
APRS-IS feed) and map rendering. The Hprof feature in the Java virtual machine was used to collect 
CPU samples to identify "hot spots" in the software that would most benefit from performance tuning 
efforts. This became significant when large numbers of mangled APRS packets were received, generally 
two packets jammed together into a single line. This was eventually determined to be buffer overflow 
because of the extra processing required at the last byte of each incoming frame. A more heavily multi-
threaded architecture with queues between the I/O port reading threads and the frame processing thread 
alleviated most but not all of this problem. 

OSM Map rendering and data file import time were both taking far too long, so considerable effort was 
spent trying to reduce the processing time of these functions. Because even the latest version of the 
OSM importer took half a day to process the planet.osm.bz2 file, a new feature was added (by alpha-
tester request) to allow users to download pre-imported map data from my website, obviating the need to
do the import-and-tiling processing themselves. 

Two "features" were found in the standard binary distro of RXTX. Firstly, Fedora Core 15 and later 
changed the directory for device locking files and RXTX did not know about this change, causing an 
inability to access serial ports on these dialects of Linux. A work-around was discovered for this 
problem. Secondly, RXTX by default only would recognize device files with the names /dev/ttyS* or 
/dev/ttyUSB*, and would not recognize an alpha-tester's Argent Data Systems OpenTracker USB, 
because Linux identified the device as /dev/ttyACM0 (an Arduino board) and this device name was not 
on the RXTX search list. A request to fix this was sent to the RXTX development team, but in the 
meantime, the Linux native libraries in the YAAC-bundled RXTX distro were replaced with recompiles 
using the alternate Linux device filename list (recognizing Arduino-based devices and other Unix-type 
serial port names). 



69

 3  The Delivered Product 
As of August 2nd, 2012, YAAC is a reasonably reliable product working on 4 different operating 
systems: Microsoft Windows®, Linux (tested on Fedora Core and Ubuntu distros), Apple Macintosh OS 
X®, and FreeBSD®, using either the Sun Java runtime or the OpenJDK runtime. It supports TNC2-
compatible and Kamtronics TNC's, and the embedded TNC's in Kenwood VHF/UHF radios (there is 
still an unresolved reported issue in communicating with the Kenwood TS-2000's built-in TNC, but I 
don't have a TS-2000 to test with). Several different NMEA-0183 compatible GPS receivers were 
verified to work with YAAC, although some had problems with sentence garbling (possibly due to 
sending sentences at too high a rate for the build being tested). 

Here's a sample view of tactical state in my neighborhood: 

Here's raw messages received by YAAC: 



70

A current bulletin board: 

 

And here's part of the current station status: 

 

 4  Future Plans for YAAC 
As of the date this paper was completed (2 August 2012), YAAC has not yet been released in open-
source, and is still in alpha-test. Upcoming plans include (but are not limited to): 

1. Complete alpha-testing, so that all implemented functionality is working for the alpha-test team. 

2. Finish writing the first release of the online help and a plugin SDK (to guide other developers in 
writing extensions to YAAC). 

3. Making a few more corrections to the architecture of YAAC to further separate the "back-end" 



71

communications and message history database code from the GUI, so that it will be easier to 
write an alternate GUI based on, for example, the Android operating system (with its non-Java-
standard UI library). 

4. Finish properly adding LGPL-compatible copyright notices to all the source files (this was not 
done during initial development, before the licensing policy was finalized). 

5. Bring YAAC up to full (instead of only partial) compliance with the APRS 1.1 and APRS 1.2 
specifications; it is currently only fully compliant with APRS 1.0.1. 

6. Create a SourceForge project for delivering the pre-built YAAC binary distribution and source 
distribution, replacing the personal website of the author as the distribution point. 

7. Set up a formal bug-tracking system (not just an e-mail mailing list). 

All of the above are prerequisites for officially releasing YAAC as an open-source product. 

Additional plans (once the above tasks are complete) include: 

8. Add support for AGWPE, soundmodem, and Sivan Toledo's javAX25 software modem/TNC's. 

9. Add support for the US Geological Survey's National Elevation Database data format and 
elevation contour plotting. 

10. Port YAAC to Android. 

 5  Conclusions 
YAAC is a viable software product, though its popularity relative to other existing APRS clients is yet to
be determined. Writing a full-functioned APRS client from scratch is a daunting challenge because of 
the wide range of capabilities needed. Trying to describe a year's software development in a single 
article is challenging because of the amount of condensation required; true knowledge of YAAC's 
internals will require access to the source code. 

Open-source development would be faster than doing closed-source development as a solo developer; 
however, the risk of doing so in a brand-new product (before the design is settled down) would probably 
create a failure, because there were many incorrect initial decisions made from incrementally building 
the requirements and feature list. On the other hand, I have great sympathy for the alpha-testers that had 
to wait for me to get around to resolving their bug reports with a closed-source development cycle run 
by a volunteer in his spare time. 

Incidentally, the process of writing this paper actually forced me to create a better software product. 
Reviewing the software in enough detail to explain it to others help me find mistakes I had made in 
implementation and repair them. 

 6  Acknowledgments 
I would like to thank Bob Bruninga, WB4APR, for coming up with the idea of APRS in the first place. 

I would also like to thank the team of YAAC alpha-testers for their efforts in testing YAAC and 
producing bug reports and improvement suggestions, including (in no particular order and a non-
complete list) Lee Bengston K5DAT, Lynn Deffenbaugh KJ4ERJ (author of APRSIS32 and 
APRSISCE), James Ewen VE6SRV, Max Wheatley ZL2MAX, Carl Makin VK1KCM, Kurt Savegnago 
KC9LDH, Gerhard F5VAG, John K2ZA, Tom Hayward KD7LXL, Jan Peterson KD7ZWV, Ron 
Werthman VA3ACZ, John Zaruba Jr., and more. 



72

All trademarks mentioned in this document are the property of the respective trademark holders. 

 7  References 
[APRS101] Ian Wade G3NRW, ed., "Automatic Position Reporting System: APRS Protocol 
Reference, Protocol Version 1.0", http://www.aprs.org/doc/APRS101.PDF 

[APRSTAC] Bob Bruninga WB4APR, "APRS Tactical Real-Time Operations", 
http://www.aprs.org/APRS-tactical.html 

[AX25] William Beech NJ7P, Douglas Nielsen N7LEM, Jack Taylor N7OO, "AX.25 Link 
Access Protocol for Amateur Packet Radio, Version 2.2", July 1998. 

[COMPRESS] Apache Commons compress, http://commons.apache.org/compress/ 

[FIELD] Bob Bruninga WB4APR, "APRS Touchtone: Field Data Entry", 
http://www.aprs.org/aprstt.html 

[GPL] GNU General Public License, http://www.gnu.org/licenses/gpl.html 

[HELP] JavaHelp 2.0, http://javahelp.java.net/ 

[KISS] Mike Chepponis K3MC, Phil Karn KA9Q, "The KISS TNC: A simple Host-to-TNC 
communications protocol", ARRL 6th Computer Networking Conference Proceedings, pp. 38-
43, 1987, http://www.ax25.net/kiss.aspx 

[LGPL] GNU Lesser General Public License, http://www.gnu.org/licenses/lgpl.html 

[NWS] Peter Loveall AE5PL, "Multiline Object Format", http://www.aprs-
is.net/WX/MultilineProtocol.aspx 

[OPENMAP] BBN Technologies, "OpenMap Open Systems Mapping Technology", 
http://openmap.bbn.com/. 

[OSM] The OpenStreetMap Foundation, http://www.openstreetmap.org. 

[RFC1122] Internet Engineering Task Force, "Requirements for Internet Hosts -- 
Communications Layers", pg. 12, http://tools.ietf.org/html/rfc1122 

[RXTX] RXTX Wiki, http://rxtx.qbang.org/wiki/index.php/Main_Page 


