2013 ARRL/TAPR DCC

DATV-Express - a Testing Report

by

• Art Towslee WA8RMC
towslee1@EE.net

• Ken Konechy W6HHC
W6HHC@ARRL.net

DATV-Express

The Presentation Authors....

Art WA8RMC

Ken W6HHC
DATV-Express

Status of Digital-ATV Today

• Video Quality of DATV far exceeds analog-ATV
• Very few hams transmitting DATV in USA today
• European DATV is very active and growing
• Australia/New Zealand has more DATV activity than USA
• Digital-ATV transmitters are currently expensive
• US$1,000 (and more) for MPEG/DVB-S Encoder/XMTR
• Cost of DATV Transmitter is barrier to more ham use

Goals of the DATV-Express Project

• Significantly reduce the price of Digital-ATV transmitters
• Plug-and-Play H/W board to minimize home construction
• Provide an open platform for future DATV development
• Help educate the community about new technologies
• Get more DATV stations on-air
• Encourage a wider audience to get ham licensed
• Byproduct will be a Software Defined Transmitter from 144 -to-2400 MHz ham bands with a B/W of up to 8 MHz.
DATV-Express

The DATVexpress Team

• Art Towslee - WA8RMC Columbus, OH, USA
• Charles Brain - G4GUO Ferring, England
• Ken Konechy - W6HHC Orange, CA, USA
• Tom Gould - WB6P Portland, OR, USA

Overview of DATVexpress System

• USB Video Capture card for MPEG-2 encoding
• PC (Linux) performs DVB-S protocol processing and outputs I/Q stream
• Simple Hardware board exciter preps I/Q stream & does IQ modulation at 144-2400 MHz
• Just add RF Power Amps and Antenna
Overview of DATV-Express System - cont’d

System Block Diagram for DATV-Express DVB-S DATV Transmitter Tested

Overview of Hardware Board

- Single custom designed board preps I/Q stream and provides IQ modulation at 1.3 GHz in our tests
- Interfaces to PC processing by USB2
- Contains PLL for the 70-to-2450 MHz freq control
- Controls Symbol-Rate
- Provides small buffer-RF amplifier to 1 to 15 mW
- DC-DC power supplies allows single 12V input
- SMA connection to RF Power Amp stages and antenna
DATV-Express

Overview of Hardware Board - cont'd

Block Diagram for DATV-Express Hardware Board

DATV-Express

Overview of Hardware Board - cont'd

DATV-Express Hardware Board (Prototype #3)
DATV-Express

DATV-Express System Specs

- DVB-S protocol was tested
- All IQ modulations (QPSK modulation was tested)
- Frequency Range:
 - 70–2500 MHz (allowed by ADRF6755 chip)
- Symbol-Rate:
 - Adjustable: 1 MSymbol/sec -to- 5 MSymbol/sec
- Forward Error Correction is selectable
- RF output ~ 20 mW buffered (SMA connector)
- USB Video Capture card allows for NTSC or PAL
- Initially designed for one video stream
- Operating system – first release as Ubuntu-32/64

1st DVB-S Transmission on First prototype
DATV-Express
Clean DVB-S 1.2 GHz spectrum

Barefoot board RF output - has 47 configurable levels of RF output

DATV-Express
QPSK Constellation noise improvements with second-etch Layout

Second-etch (left) is clean - Original etch (right) had noisy RF section
DATV-Express
DVB-S clean with 1st stage RF amp

Test Using 1st-stage RF amp (Kuhne MKU-P1301A 1W FM) on 1.2 GHz

DATV-Express
DVB-S Acceptable with final RF amp

Test Using DownEast 30W (FM) on 1.2 GHz has shoulders at -30 dB
One aspect of power amplifiers surprises newcomers to Digital-ATV

DATV can NOT achieve the same average power out of an RF amplifier as FM modulation

Most digital modulation technologies have a very high “peak-to-average ratio”

To prevent DATV distortion, you need to reduce the drive so peaks do not go into compression or flat-topping.

Web site from Alberto (DGØVE) explains (in German):

“All [our FM] amplifiers can also be used for DVB-S and DVB-T with reduced power.

You will notice that in the DVB-S mode only about 20% to 25% of the maximal power (P-1dB) can be used.

Working in the DVB-T mode you will get only approximately 8% to 10% of the P-1dB power level.”
DATV-Express

Bench Test RF Measurements for DVB-S

<table>
<thead>
<tr>
<th>DATV-Express exciter Menu Power-level setting</th>
<th>Kuhne first-amp spectrum level</th>
<th>Spectrum Analyzer RBW setting</th>
<th>"distortion shoulder" below main carrier</th>
<th>Down East 2nd-amp spectrum level</th>
<th>Spectrum Analyzer RBW setting</th>
<th>"distortion shoulder" below main carrier</th>
<th>Down East Power Measurement (HP 435A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-12 dBm</td>
<td>300 kHz</td>
<td>NONE</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>Output dBm</td>
</tr>
<tr>
<td>30</td>
<td>-3 dBm</td>
<td>300 kHz</td>
<td>NONE</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>Output dBm</td>
</tr>
<tr>
<td>40</td>
<td>+8 dBm</td>
<td>300 kHz</td>
<td>NONE</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>Output dBm</td>
</tr>
<tr>
<td>44</td>
<td>+15 dBm</td>
<td>300 kHz</td>
<td>-34 dB</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>Output dBm</td>
</tr>
</tbody>
</table>

The above spectrum analyzer readings account for 20 dB of external attenuation.

20	N/A	+22 dBm	300 kHz	NONE	N/A	Output dBm	Output W	
25	N/A	+20 dBm	300 kHz	-55 dB	N/A	Output dBm	Output W	
30	N/A	+21 dBm	300 kHz	-22 dB	38.3 dBm	4.3 W	Output dBm	Output W
33	N/A	+32 dBm	300 kHz	-30 dB	38.8 dBm	7.6 W	Output dBm	Output W
35	N/A	+38 dBm	300 kHz	-28 dB	49.3 dBm	10.7 W	Output dBm	Output W

The above spectrum readings account for 10 dB of external attenuation.

DATV-Express

Simple DATV-Express User Interface

Software User Interface uses Qt5 (screen is configured for DVB-S Protocol)
DATV-Express
DATV-Express capable of other DATV protocols used by hams

Test using prototype DVB-T protocol at 2 MHz bandwidth on 437 MHz

DATV-Express
DATV-Express capable of other DATV protocols used by hams – cont’d

Testing constellation for 16APSK digital modulation for DVB-S2 protocol
DATV-Express

Current Project Status

• Architecture – completed, stable
• Schematic Capture – completed in DXdesigner tool
• PCB Layout – second-pass completed in PADS tool
• Four prototype boards are assembled and still working
• Design check-out and software integration continues
• Initial DVB-S transmission tests completed
• Initial DVB-T protocol working
• Two switching-PS-freq spurs appear on RF (-60 dB)

DATV-Express

What about DVB-T, DVB-S2, 8VSB, ITU-T_J .83, etc?

• “Yes, they are possible....”
• “But, the team has only committed to DVB-S, probably DVB-T”
• We are being encouraged to plan for Raspberry Pi and looks feasible with more functions moved into FPGA.
Conclusion and Plans

- Ubuntu 32/64 Code is essentially finished
- Finish tweaking FPGA code
- Looking for volunteers to help with software tasks
- Finish etch-clean-up “pre-production” layout (third layout)
- Source files will be freely available with no restrictions (Software, FPGA coding, Schematic, PADS-files, etc)
- DATV-Express team on target for ~ten pre-production DVB-S boards with Ubuntu for alpha testers...late October.

Useful Links:

- Amateur Television of Central Ohio
 www.ATCO.TV
- British ATV Club - Digital Forum
- OCARC library of newsletter DATV articles
- TAPR Digital Communications Conference proceedings (free downloads)
 www.TAPR.org/pub_dcc.html
- Yahoo Group for Digital ATV
 http://groups.yahoo.com/group/DigitalATV/
- Charles-G4GUO blog on DATV-Express project development
 www.g4guo.blogspot.com/
- DigiLite Project for DATV (derivative of the “Poor Man's DATV”)
- SR-Systems D-ATV components(Boards)
 www.SR-systems.de and www.D-ATV.org
- CQ-DATV online (free bi-monthly) e-magazine (ePub format)
 www.CQ-DATV.mobi