Bandwidth Requirements for Digital Voice

Bryan Hoyer - K7UDR
RF vs Network Protocols

- RF Protocols are designed to minimize BW while maintaining Data Integrity in a Noisy Environment.
- Network Protocols are designed to maximize throughput in a generally reliable link.
Digital Voice RF BW

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Vocoder</th>
<th>Voice Data</th>
<th>FEC</th>
<th>Frame AuxData</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>CODEC-2</td>
<td>Variable</td>
<td></td>
<td></td>
<td>700 +</td>
</tr>
<tr>
<td>D-STAR</td>
<td>AMBE</td>
<td>2400</td>
<td>1200</td>
<td>1200</td>
<td>4800</td>
</tr>
<tr>
<td>DMR</td>
<td>AMBE + 2</td>
<td>2450</td>
<td>1150</td>
<td>1200</td>
<td>4800</td>
</tr>
<tr>
<td>Fusion</td>
<td>AMBE + 2 HR</td>
<td>2450</td>
<td>1150</td>
<td>1200</td>
<td>4800</td>
</tr>
<tr>
<td>Fusion</td>
<td>AMBE + 2 FR</td>
<td>4900</td>
<td>2300</td>
<td>2400</td>
<td>9600</td>
</tr>
</tbody>
</table>
Ethernet II Frame
Data Requirements

<table>
<thead>
<tr>
<th></th>
<th>S/P</th>
<th>Pre</th>
<th>Header</th>
<th>DATA</th>
<th>CSUM</th>
<th>Gap</th>
<th>TOTAL</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>1</td>
<td>8</td>
<td>46</td>
<td>14</td>
<td>4</td>
<td>12</td>
<td>84</td>
<td>33600</td>
</tr>
<tr>
<td>TCP</td>
<td>1</td>
<td>8</td>
<td>58</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>91</td>
<td>36400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8</td>
<td>58</td>
<td>18</td>
<td>4</td>
<td>12</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>58</td>
<td>27</td>
<td>4</td>
<td>12</td>
<td>109</td>
<td>14533</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>58</td>
<td>36</td>
<td>4</td>
<td>12</td>
<td>118</td>
<td>11800</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>58</td>
<td>45</td>
<td>4</td>
<td>12</td>
<td>127</td>
<td>10160</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>58</td>
<td>54</td>
<td>4</td>
<td>12</td>
<td>136</td>
<td>9067</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>58</td>
<td>63</td>
<td>4</td>
<td>12</td>
<td>145</td>
<td>8286</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>58</td>
<td>72</td>
<td>4</td>
<td>12</td>
<td>154</td>
<td>7700</td>
</tr>
</tbody>
</table>
Things to Consider

- Multiple ways to do the same thing
 - D-Plus
 - X Reflector
 - DCS CCS
 - DMR
 - Motorola Hytera ????
Internet Engineering Task Force

- Not a Club or Entity
- No Dues or Membership
- No Corporate Sponsorship
- Has no Authority
- Organized by Working Groups
- Operates on Rough Consensus
Goal of the ARETF

• Become The Place to further the Development, Testing and Dissemination of Amateur Radio Standards
Status

• Forum is up
• Repository Established
 • Format defined
• Authentication WG
 • First Draft Published
• Digital Radio Testing WG
Interested?

www.ARETF.org
UDRX-440
Universal Digital Radio

- 25W 70cm SDR
- 4800 to over 100kbps
- AX25 and D-STAR
- Open Source Linux Server
- Network Interface via Web Browser
- 4 USB Accessory Ports
History

• Announced in 2012
• Total RF Re-Design in 2013
• Processor Board running continuously
• Prototype 3 working in RF Lab Now
Switching to the R-Pi 2

- Lower cost
- Current Design
- Ability to Upgrade in the Future
- Developer Community
UDRX Current
SBC & RF Deck
UDR SBC vs Raspberry Pi2
Cross-Connect Board
Test Configuration
PiDV TM

- AMBE3000 Vocoder
- 26 Pin Raspberry Pi Header
 - Works with all R-Pi variants
- Serial Port Interface
- Standalone or AMBE Server
ThumbDV™

- AMBE3000 Vocoder
- FTDI USB Serial Converter
- Standalone or AMBE Server
UDRC - Universal Digital Radio Controller

• Controller for Yaesu DRX-1
• Raspberry Pi 2 Shield
• Adds D-STAR 9600 Packet Support
 • Controller
 • Audio CODEC
• 12V Powered